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Absiract. The probability wave of the atomic configuration is used to study the ordered
structures of ternary 11I-V semiconductor alloys. The atomic configuration of the most
stable superlatiices formed in the ternary [1I-V semiconductor alloys is discussed. Some
features of the experiments are explained.

1. Introduction

Recently, a large number of long-range-ordered structures have been found in ternary
I1I-V semiconductor alloys of type AJ'_BUCY and AI'CY DY grown by molecular
beam epitaxy, metallorganic chemical vapour deposition and vapour levitation epitaxy.
Since the first ordered structure L1, was observed in Al__ Ga,As by Kuan et al
[1], ordering has also been found in other families of compounds. The alloys with a
‘commeon anion’ known to order are Al,_ In, P [2, 3}, Ga,__In_P [4-7], Al,__Ga_As
[1], Al,_,In_As [8] and Ga,__In_As [9-12]. Additionally, alloys with a ‘common
cation’, namely GaP,_,As_ [13-15], GaAs,__Sb, [16-18] and InAs,__Sb_ [19] and
InAs,__P. [20] have been reported.

The usual expected structure of a ternary alloy is zincblende (space group, F43m),
a disordered phase in which, in the ‘common-cation’ alloy Al BICY atoms Al
and B randomly occupy one set of face-centred cubic (FCC) positions and atoms CY
occupy the other set and, in the ‘common-anion’ alloy AM'CY_ DY, atoms CV and
DY randomly occupy the anion FCC positions, while atoms A™ occupy just the cation
FCC positions. In describing ordered structures derived from the alloy AM_BUIcV
we call the zincblende compounds AM™CY and BWCY the ‘parents’, and the atloy
A!_BUCY the ‘family’. Then there is an infinite set of possible ordered compounds;
for example, for a superlattice, one varies the periodicity of the lattice. The newly
reported ordered structures ail involve ordering of either the cations (for the alloy
A" _BICVYY or the anions (A™CY__DY) on one rCC sublattice.

The ordered structures can be derived from some phenomenological models.
Khachaturyan [21] has developed a statistical thermodynamic theory of the order—
disorder transition in crystal solid solutions which transforms the real space into the
reciprocal space of the crystal lattice and has set up the self-consistent equations for
the order parameter. Clapp and Moss [22] and de Fontaine [23] discussed ordering
in the Fcc lattice according to the special-point approach. Teng ef al [24] used five
special k-point ordered structures to calculate the band structures of ternary 11I-V
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semiconductor alloys. Ferreira er al [25] used six ordered structures to determine
the interaction parameters. We have used [26] the theory of the probability wave of
atomic configuration (PWAC) to study the occupation probabilities of different kinds of
atom at lattice sites in multi-component solid solutions. In this paper, we shall apply
this method to study the ground states in multi-component semiconducting alloys.

2. The crystal structures of ground states

The Hamiltonian of a solid is the summation of the kinetic energy of all particles
in the solid and the interaction potential energy between them. By means of the
adiabatic approximation, the electronic degrees of freedom are reduced so that we
have a system of ions with an effective Hamiltonian. The ion—ion interaction can be
divided into two parts: HQ . . which describes the interactions between the ions
that are in equilibrium positions, and th, which is caused by the deviation from
equilibrium positions of ions:

Hion = My, + Higu—iou‘ (1)

In the Hamiltonian in equation (1), we consider the term HJ . which is
different for different compositions and atomic distributions in multi-component
crystal structures and determines the crystal structures of multi-component solid
solutions.

We consider the ordering of two kinds of atom: A and B. The Hamiltonian
of its crystal structure is & random variable and the configuration average of
the Hamiltonian can be determined by the augmented-space formalism which was
introduced formally by Mookerjee [27] to evaluate the Green function in real space.
The randomness in HY, . can be conveniently characterized with the help of an
indicator function n(R,S) (S = A, B) which takes the values 1 and 0 depending on
whether the lattice site R is occupied by an atom of type S or not, respectively. The

Hamiltonian H . . can thus be written as
i
Hiyn =12 3 Wg(R- R)n(R,Sn(R,S) o)
R.R' S8

where W, (R — R') represents the effective interaction energy between the S ion at
the R site and the §' ion at the R’ site (S = A or B, = A or B), and }_' means
exclusion of the term corresponding to R = R’ in the sum.

Rather than thinking of the indicator functions n(R,S) as random quantitics we
interpret them as quantum mechanical operators characterized by their eigenfunctions
|RA) and |RB)} [28]. Thus,

#(R,S)|RS') = b4 |RS") 3

where we have used a caret to distinguish the operator A(R,S) from the random
quantity n(R,S). The replacement n — # in equation (2) defines a Hamiltonian

§ wion N the space spanned by the functions [[p [RSz) where Sp = A, B. A state
in configuration space is specified by selecting the set {Sp} in exactly the same way as
the occupation of all sites to characterize a particular configuration. The average can
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be similarly calculated as expectation values in appropriate augmented-space states.

The state
|RO} =/ P,(R)|RA) + \/ P,( R)|RB) @

describes a situation where the lattice site B is occupied with probability P, by an
A atom and with probability Py by a B atom with

Y P(R)= N, (5)
R
> Py(R) = Np ©6)
R

" where N, and Ny are the total numbers of A atoms and B atoms, respectively, in
solids. Hence,

E = H = {(f|A|f) M
where

If)=1...R0...). ®)

Using equations (3) and (4), the average value of the Hamiltonian is given by

E=Uy- NS W(R) +1 S W (R- R)P(R)PA(R) (9)
R R R

where
W(R~R) = Wy (R— R) + Wg(R - R) - 2W,5(R- R) (10)

Up= LNy T W () + N5 T Wig(R) (1)
R R

is the total internal energy of a pure A-atom system and pure B-atom system. Since
only P,(R) occurs in equation (9), we simply use P(R) to represent P,(R) in the
following.

The crystal structure of the ground state can be determined by minimizing the
expectation value of the energy when the atomic mean occupation probability at the
lattice site is introduced [26]. The PWAC is represented by

P(R) =) Q(k)exp(ik - R) (12)
k

where k is the wavevector which is taken in the first Brillouin zone; Q(k) are the
amplitudes of the probability wave with the wavevector k and they are determined
by the enecrgy-minimum condition and the conservation of particle number. The
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Fourier transform equation (12} converts the problem of determining P(R) into that
of determining N eigen-amplitudes Q{k). Using equation (12), it gives

E = Uy - le(1-2)NV(0) + %NZ’.' V (k)| QR (13)
where

V(k) = 2,.: W(R) exp(ik - R) (14)

2= Ny/N = Q0). (15)

This allows us to determine the lowest-energy state in k-space and to determine the

coefficients Q(k) in equation (12) according to the minimum of energy. In [24], it is
shown that if

[8V(Kk)/Ok]l4=n, = O (16)

with V(k,) < 0, and k, is n-fold degenerate with the degenerate states V(kl),
V(kd), ..., V(k}), the ground state is represented by the PWAC

P(R) =z +)_ Q(ky) exp(iky - R) (17)
and the energy of the ground state is

E=Uy—ilz(1-z)NV(0) + IN Z V(EINQED . (18)

3. Ordered crystal structures

In ternary I1I-V semiconducting alloys Al _BUICY or ATICY DY, if we consider
the situation of AIl_BWCY, which is also applicable to AMCY DY, there are two
bases, i.e. AIICY (simply called the A basis) and BMCVY (simply called the B basis).
We regard a basis as a structure point so that it converts into the structure problem
of a two-component solution. The corresponding structure is a FCC crystal structure,
and T, X, K and W are the high-symmetry points in the Brillouin zone (BZ). The
lattice sites are represented by

R=1ma, + im,a, + }ma, (19

where m,, m, and m, are integers and m,; + m, + my IS even.

If we suppose that P(R) is the occupation probability of the A basis at the site
R, according to the PWAC theory, it is described by equation (17). At the symmetry
point in the first BZ, the wavevector in the same star {k} is denoted by k;;. The
amplitudes Q(k) are written as a product of two parameters:

Q(kjs) = nsﬁys(js) (20)
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where 7, is only related to the {k,} star, while +,(j;) are related to the specific
k;, contained in the {k.} star. In fact, », is the order parameter of the ordered
phase. n, = 0 corresponds to the disordered phase and || = 1 corresponds to the
completely ordered phase:

P(Ry=gc+ 1> 0,y [v(i) explik;, - B) + ~; (4,) exp(—ik;, - R)]. 1)

s 7

The key point in finding the energy value of the ground state in equation (9) and
the corresponding PWAC is to determine the wavevector ky,. When V (k) > 0, there
is only a disordered state. When V(k;) < 0 and the conditions of equation (16)
are satisfied, phase decomposition will appear when k;, = 0 while a superlattice will
appear when k; # 0. Different k; will lead to different superlattices. In the first Bz
of the crystal there are two kinds of V(ky) minimum point: firstly, arbitrary points
in the BZ which depend on the atomic interaction parameters W (R — R'); secondly,
high-symmetry points according to Lifshitz’s [29] criterion, which are determined by
the symmetry of the disordered state and lead to the most stable ordered structures.
Therefore we shall consider only (X), (L) and (W) stars when we study the atomic
configurations of the most stable ordered structures.

3.1 V(L) minimum and V(L) <0

There are two situations. Firstly
P(R) = z + n v, cos[37(my + my + my))

_ { z+ v when %(ml + m; + m,) is even @)

x— YL otherwise,

Using the conditions of complete ordering n, = 1, P(R) = 1 or 0, and the coefficient
41, and the corresponding concentration of the completely ordered state are v, = 1

and z = 1, respectively. Figure 1(a) shows the superlattice determined by equation
(22).
Secondly,

P(R) = z + nu v {— os[iw(m; + my + m3)] + cos[iw(—my + my + my)]
+ cos[1n(m; — m; + m3)] + cos[ir(m, + my — my)]}

4207 when 1(m; + m, + m3) and m; are even, or
_ when %(m1‘+ m, + m;) is odd and @)
one of m; 15 even

x— 20 otherwise,

The coefficient -, and the concentration of the completely ordered state are -, = %
and z = 1, respectively. Figure 1(i) shows the superlattice along the {111) direction.
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{c} (d}

Figure 1. Ordered structures in ternary I111-V semiconductor alloys: (¢) the superlattice
in the [111] direction; (b) the superlattice in the !IO(}] direction; (¢) the superlattice in
the (100) direction; (d) the superlattice in the [103] direction; (¢) the superiattice in the

[001] and [10%] directions; (f) the superlatiice in the [001] and (111} directions; (g} the
supertattice in the (100} and {11} directions; () the superlattice in the {111} direction.

3.2 V(X) minimum and V(X) < 0
Equation (21) reduces to

P(R) = z 4 nx[vx(1) cos(mm,) + vx(2) cos(mm,) + vx(3) cos(wm;)]. (24)
There are two situations. Firstly, for y5 (1) = vy # 0, vx(2) = (3} =10,

P(R)==x cos{(mm,) =
() + nxrx cos(mm) { T = NxIX when m; is odd.

The coefficient vx and the concentration of the completely ordered state are vy =

and x = 3, respectively. Figure 1(b) shows the superlattice along the {100] directio
determined by equation (25).

Secondly, for vx(1) = vx(2) = %(3) = x,
P(R) = = + nyyx[cos(mm) + cos{wm,) + cos(wm;)]

@+ Iy vx when m; are all even

The coefficient «y and the concentration of the completely ordered state are vy =
and = = §, respectively. Figure 1(c) shows the superlattice along the (100) directio
determined by equation (26).

3.3 V(W) minimum and V(W) < 0

Only one structure is obtained in this situation:

P(R) = = + nyyw {cos[r(m, + ym;) + sin[x(m; + 1m;)]}
IEES USSR when m, 4+ §m,; of m; + $m; — 5 is even an
z — Inwrw otherwise.
The coefficient ~y, and the concentration of the completely ordered state are vy = 1
and = = 1, respectively. Figure 1(d) shows the superlattice along the [101] direction.
There are another three stable ordered structures resulting from the degeneration
of V(k).
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M4 VXy=V(W)y=V,,.(k)<0
Then,

P(R) = x + ngyx cos(mmy) + nyyw cos[x(m; + %ms)]

z+ %%+ twrw when my and my + %m3 are even
= < =+ IxTx — Twrw when m; is even and m; + im; is odd
T NxYx otherwise.

(28)

The coefficients vy and -~y and the concentration of the completely ordered state
are vx = §, Yw = 3 and = = , respectively. Figure 1(e) shows the superlattices in
the [001] and [10%} directions determined by equation (28).

5. VIXy=V({L)=V,, (k)0

There are two situations. Firstly,

P(R) = = 4 nyyyx cos(mms)

+ 77 {f.:os[%vr(m1 + my + my)] + COS[%W(ml +m, — 7n3)]}

x4+ nxvx + 2707 when m, and %(ml + m, + mj) are even
_ ]z + xYx — 2L when m, is even and %(ml + my + my)
is odd
T — xTX otherwise.
29

The coeflicients v and -+ and the concentration of the completely ordered state
are vx = 1, v, = 1 and = = 1, respectively. Figure 1(f) shows the superlattice
determined by equation (29).

Secondly,

P(R) = & + ngx[cos(mm,) + cos(wm,) + cos(mm;)]
+ v {cos[zm(my + my + my)] + cos[w(—=m; + my + my)]
+ cos[3m(m; — my + my)] + cos[(m + m, —my)]}
x+3ngvx +4n,v. when m; and L(m, + m, + m,) are even
x4+ 3nxvx — 4L when m; is even and 1(m, + m, + my)
is odd
T — Ny otherwise.
| (30)
The coeflicients vy and +; and the concentration of the completely ordered state

are vx = 3, 7. = & and x = }, respectively. Figure 1(g) shows the superlattices
determined from equation (30).
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4. Discussion

We have used the PWAC to study the ground states in ternary III-V semiconductor
alloys. The most stable ordered structures are determined.

There are many cases of ordering found in III-V ternary semiconductor alloys.
Most of them are (111} ordering. The ‘common-anion’ alloy Ga,_,In_P [4-7] has
(111) ordering and the ‘common-cation’ alloy GaAs,__Sb, [16-18] also shows (111)
ordering. Some other ordered structures have also been found. For some alloys,
eg Ga,_,In_As [9, 10], more than one special-point direction has been reported.
It should be noted that the experimental conditions for long-range ordering are
complicated. Some ordered phases of the alloy exist as metastable phases and the
phenomenon of ordering also depends on the kinetics of growth.

References

(13 Kuan T S, Kuech T F, Wang W [ and Wilkie E L 1985 Phys. Rev Lext 54 201

[2] Suzuki T, Gomyo A, lijima S, Kobayashi K, Kawata S, Hino | and Yuasa T 1988 Japan. 1 Appl
FPhys. 27 2098

{3] Yasuvami S, Nozaki C and Ohba Y 1988 Appl Phys. Lent. 52 2031

[4] Gomyo A, Suzuki T and lijima S 1988 Phys. Rev Lent. 60 2645

{5] Bellon P, Chevalier J P, Martin G P, Dupont-Nivet E, Thiebam C and André J P 1988 Appl Phys.
Lent. 52 567

[6] McKernan S, Decooman B C, Carter C B, Bour D P and Shealy J R 1988 J Mater Res. 3 406

{7 Chen G S and Stringfellow G B 1991 Appl Phys. Lett 59 324

[8] Norman A G, Mallard R E, Murgatroyd | J, Booker G R, Moore A H and Scott M D 1987 Inst.
Phys. Conf, Ser. 87 (Bristol: Institute of Physics) p 77

[91 Kuan T S, Wang W [ and Wilkie E L 1987 Appl. Phys. Ler. 51 51

{10] Shahid M A, Mahajan S, Laughlin D E and Cox H M 1987 Phys. Rev. Lert 58 2567

{11] Shahid M A and Mahajan S 1988 Phys. Rev. B 38 1344

[12] Matsui Y, Hayashi H and Yoshida K 1986 Appl. Phys. Lett. 48 1060

[13] Plano W E, Nam D ‘W, Major ] §, Hsieh X C and Holohyak N 1988 Appl. Phys. Lett. 53 2537

[14] Jen H R, Cao D § and Stringfellow G B 1989 Appl Phys. Letr. 54 1890

[15] Chen G S and Stringfellow G B 1991 Appl Phys. Lert. 59 3258

[16] Jen H R, Cherng M J and Stringfellow G B 1986 Appl Phys. Lerr. 48 1603

[17} Ihm Y E, Otsuka N, Klem J and Morkoc H 1987 Appl. Phys. Lett. 51 2013

[18} Jen HR, Jou M J, Cherng Y T and Stringfellow G B 1987 I Cryst. Growth 85 175

[19] Jen H R, Ma K Y and Stringfellow G B 1989 Appl Phys. Lew 54 1154

[20) Jaw D H, Chen G S and Stringfellow G B 1991 Appl Phys. Lent. 59 114

[21] Khachaturyan A G 1973 Phys. Status Solidi b 60 9

[22) Clapp P C and Moss § C 1968 Phys. Rev. 171 754

[23] de Fontaine D 1979 Solid State Physics vol 34, ed H Ehrenreich, F Seiz and D Turnbull (New
York: Academic) p 73

[24] Teng D, Shen J, Newman K E and Gu B L 1991 [ Phys. Chem. Solids 52 1109

[25] Ferreira L G, Wei § H and Zunger A 1989 Phys. Rev B 40 3197

[26] Gu B L, Ni J and Zhang X W 1991 J Appl. Phys. 70 4224

[27] Mookerjee A 1973 J Phys. C: Solid Staie Phys. 6 L205

28] Diehl H W and Leath P L 1979 Phys. Rev. B 19 587

[29] Lifshitz E M 1942 Fiz. Zh 7 61, 251



